
JOURNAL OF COMPUTATIONAL PHYSICS 100, 197-199 (1992) 

NOTE 

A Method for Detecting Vacancy Diffusion 
in Molecular Dynamics 

Molecular dynamics [ 1 ] is a powerful tool in studying 
solid state diffusion in metals [2]. The new many-atom 
potentials [S] have made the simulations of metals more 
quantitative, and melting transition [4], surface structures 
[S], and dislocation structures [6] of simple metals can be 
described well when compared with the experimental 
results. The diffusion of atoms is easy to detect during the 
simulation simply by following their trajectories. However, 
it is not as straightforward to detect vacancies and follow 
their jumps from one lattice site to another. This is still quite 
easily done in perfect crystals but the situation is more 
cumbersome in disordered solids, near dislocations, or in 
amorphous solids, where even the definition of a vacancy 
may become ambiguous [7,8]. 

In this note we propose a simple method to detect vacan- 
cies and to follow their movements in molecular dynamics 
simulations. The physical idea is to use a test particle which 
is trapped in the vacancy and thus will follow it dynami- 
cally. In reality a rare gas atom like helium would be a good 
probe. In computer simulations, however, we can choose a 
probe which does not disturb the host solid at all. We 
assume that the probe is moving in a total potential caused 
by repulsive pairwise interactions 4 with the host atoms 
positioned at Ri: 

V(r) = c q4(r - Ri). 
I 

(1) 

The interaction only goes from the host atom to the probe, 
whereas the existence of the probe does not affect the poten- 
tial felt by the host atoms. A purely repulsive potential 4 
means that a vacancy is a potential minimum for the probe. 
The dynamical movement of the probe is governed by the 
equation of motion 

d 1 
dt 

p-f-& 
mb mb ’ (2) 

where mb and v are the mass and the velocity of the probe, 
respectively, f = -VI’, and q is a friction added to guaran- 
tee an adiabatic movement of the probe. The friction term is 
needed since the energy of the probe is not conserved (the 

probe has no effect on the energy of the host metal atoms). 
In molecular dynamics it is easy to include the probes (one 
or more) and to follow them by solving their equations of 
motion simultaneously with the equations of motion of the 
host atoms. 

The question now is to find a potential C$ which pulls 
the probe to the new vacancy when the neighbouring host 
atom jumps into the vacancy. A hard core potential (like 
Lennard-Jones) will not do, since it can push the probe to 
the wrong direction and possibly detrap it from the vacancy. 
Here we show that a Gaussian potential 

q+(r) = (&)e-‘2’2”2, (3) 

with large enough width o always pulls the probe to the new 
vacancy. 

The total potential V(r) of the probe, Eq. (1) is with a 
good accuracy constant throughout in the perfect fee lattice 
provided that the potential width o is large enough. With 
(T = r,,,, (the nearest neighbour distance) the potential is con- 
stant with the accuracy of 1 ppm; if cr = OSr,, the variation 
in the total potential is still less than 1%. A vacancy in a 
perfect fee lattice then results in an attractive Gaussian 
potential -4(r) for the probe. If a neighbouring host atom 
starts to move towards the vacancy and, if o 3 rnn, the probe 
is immediately pulled towards that atom. This means that 
the purely repulsive potential can result in an effective 
attractive force between the probe and the moving atom. 
This is clearly seen in Fig. 1 which shows the potential of the 
probe for different positions of the neighboring host atom in 
the cases of g= rnn and o=0.8r,,. In the latter case the 
potential minimum is first seen to be shifted in a direction 
opposite to the incoming atom, but this effect is still very 
small. 

In real simulations the host is at a finite temperature and 
the atoms are vibrating thermally. In addition the vacancy 
is relaxed. Therefore, it is better to choose c to be slightly 
smaller than the nearest neighbour distance, say c = 0.8r,,. 
This guarantees that the potential minimum stays in the 
center of the vacancy and that the probe can follow the 
vacancy movement adiabatically. The strength of the poten- 
tial &/mb and the friction q/m, can be chosen so that the 
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FIG. 1. Potential energy (solid curve) of the probe when one of the 
neighbouring atoms in an fee lattice is moving towards the center of the 
vacancy. The vertical dashed lines show the positions of the vacancy and 
the nearest lattice site. The vertical solid line shows the site of the moving 
atom. The dashed curve in each figure is the potential of the probe in the 
original undisturbed vacancy. In (a), (b), and (c) 0 = r,,, in (d), (e), and 
(f) cr=0.8r,,. 
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FIG. 2. Dynamics of the probe in an fee lattice with a vacancy. In (a) 
and (b) the neighbouring atom starts to move sinusoidally between the 
vacancy center and its original position at the timestep 20. In (c) and (d) 
the atom makes sudden jumps between the vacancy and its original site. 
)&nb = r,,,,/dt*. In (a) and (c) q/m, = 2/dt and (r = r,,. In (b) and (d) 
qJmb = 1.5/dt and o = 0.8r,,. 

probe follows the movement of the vacancy adiabatically as 
demonstrated in Fig. 2 for an fee lattice where only one 
atom is moving: the nearest neighbour of the vacancy moves 
into and out of the vacancy. In (a) and (b) the atom moves 
sinusoidally between the two sites and the movement of 
the probe is followed. In (c) and (d) the response of the 
probe to extreme steplike jumps is shown. It is seen that by 
choosing qiOJmb = r,,/dt’ (dt being the timestep) and 
u/m, = 2/dt the probe follows practically adiabatically the 
potential minimum. 

By using the test particle the trajectory of the vacancy can 
be easily followed in molecular dynamics. This is especially 
beneficial in studying diffusion of vacancies in disordered 
systems, say near dislocation core, where the atoms or the 
vacancy are not bound to be close to the sites defined by a 
lattice. 

The potential energy of the probe goes over a maximum 
when the vacancy makes a jump. By counting the maxima 
the total number of jumps can be determined. However, 
care should be taken to choose the potential parameters so 
that similar maxima are not obtained, for example, by a 
breathing movement of the atoms around the vacancy. 

In amorphous solids, the usual methods of defining and 
detecting vacancies are the cavity analysis and the calcula- 
tion of the local atomic stresses [7, 83. This note suggests an 
alternative way of defining the vacancy as a deep enough 
minimum in the total potential of the probe. The relatively 
large width of the Gaussian potential means that only of the 
order of one sampling point per atom would be needed to 
observe the vacancies. 

The test particles can also be used for detecting interac- 
tions between vacancies. We can choose the test particles to 
have a mutual interaction which is the same as the potential 
provided by the host atoms. Then, for example, in divacan- 
ties two test particles would be within a nearest neighbour 
distance from each other. 

In conclusion, we propose that the vacancies can be 
observed and the vacancy diffusion can be followed in 
molecular dynamics using a test particle which has a 
repulsive Gaussian interaction with the host atoms. 
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